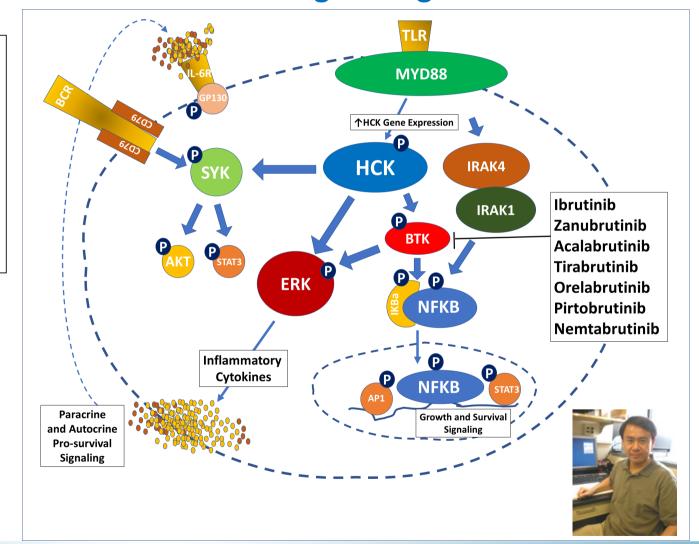

Waldenstrom's Macroglobulinemia: How I Treat in 2024

Steven P. Treon MD, PhD, FRCP, FACP Harvard Medical School Bing Center for Waldenstrom's Macroglobulinemia Dana Farber Cancer Center, Boston MA

MYD88 Directed Pro-survival Signaling in WM

The NEW ENGLAND JOURNAL of MEDICINE

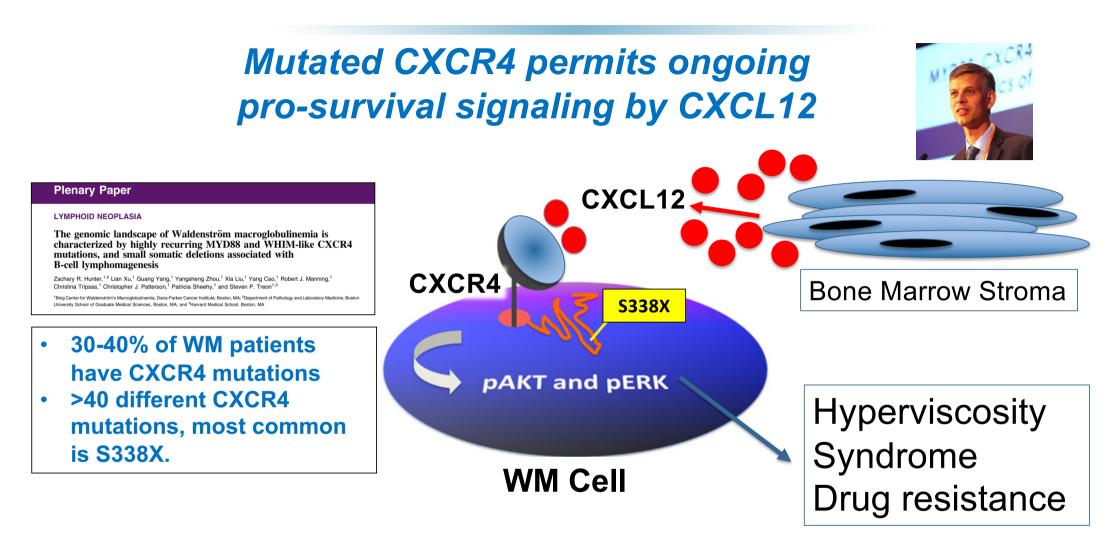

ORIGINAL ARTICLE

MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D., Lian Xu, M.S., Guang Yang, Ph.D., Yangsheng Zhou, M.D., Ph.D., Xia Liu, M.D., Yang Cao, M.D.,
Patricia Sheehy, N.P., Robert J. Manning, B.S., Christopher J. Patterson, M.A., Christina Tripsas, M.A., Luca Arcaini, M.D., Geraldine S. Pinkus, M.D.,
Scott J. Rodig, M.D., Ph.D., Aliyah R. Sohani, M.D., Nancy Lee Harris, M.D.,
Jason M. Laramie, Ph.D., Donald A. Skifter, Ph.D., Stephen E. Lincoln, Ph.D., and Zachary R. Hunter, M.A.

MYD88 mutations occur in 95-97% WM Patients

Treon, et al. N Engl J Med. 2012;367(9):826-833. Yang, et al. Blood. 2013;122(7):1222-1232. Hodge, et al. Blood. 2014;123(7):1055-1058. Yang, et al. Blood. 2016;127(25):3237-3252. Chen, et al. Blood. 2018;131(18):2047-2059. Liu, et al. Blood Adv. 2020;4(1):141-153. Munshi, et al. Blood Cancer J. 2020;10:12. Munshi, et al. Blood Adv. 2022.

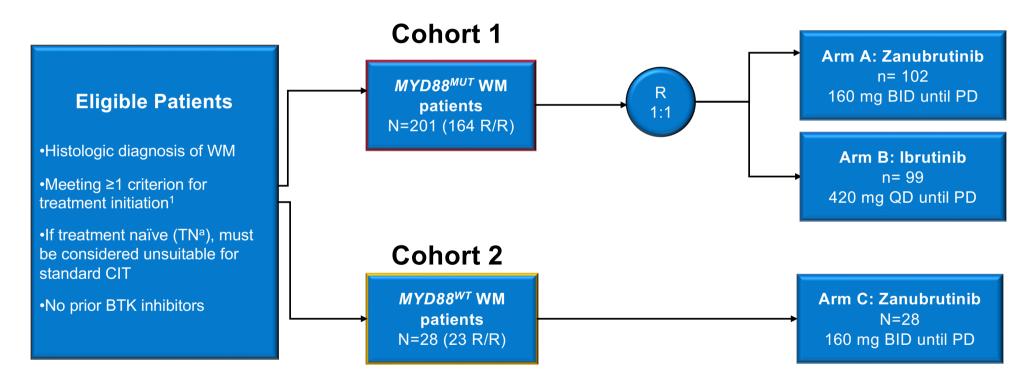


BTK-Inhibitor Trials in WM

Study	Cohort	Agent (s)	N=	Time to Major Resp.	ORR/Major RR	<u>></u> VGPR	PFS
Pivotal Study	R/R	Ibrutinib	63	2 mo.	91% / 79%	30%	54% @ 60 mo.
INNOVATE Arm C	R/R	Ibrutinib	31	2 mo.	87% / 77%	29%	40% @ 60 mo.
Phase 2	TN	Ibrutinib	30	1.9 mo.	100% / 87%	30%	76% @ 48 mo.
	TNI D/D	Ibrutinib	150	2 mo	000/ / 760/	210/	68% @ 54 mo

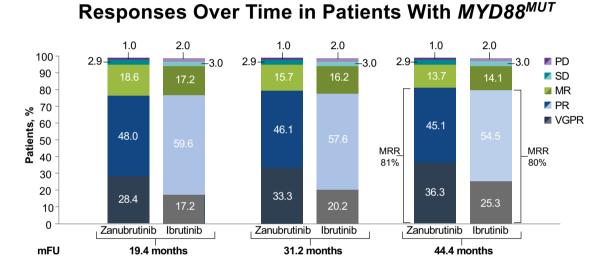
Median ORR: 93%; Major RR: 81%; <u>></u>VGPR: 30%; PFS 76% @ 4 yrs

ASPEN-2 (MYD88 ^{WT})	TN, R/R	Zanubrutinib	28	3 mo.	78% / 63%	27%	84% @ 42 mo.
Phase 2	TN, R/R	Acalabrutinib	106	N/A	94% / 81%	39%	84% TN / 52% R/R (@ 66 mo.)
Phase 2	TN, R/R	Tirabrutinib	27	1.9 TN 2.1 R/R	96% / 93%	33%	93% @ 24 mo.
Phase 2	R/R	Pirtobrutinib	80	N/A	81% / 67% (prior cBTKi) 88% / 88%	24% (prior cBTKi) 29%	57% @ 18 mo. (for prior cBTKi) N/A for cBTKi naïve.



Hunter et al, Blood 2013; Treon et al, Blood 2014; Roccarro et al, Blood 2014; Cao et al, Leukemia 2014.

Impact of CXCR4 Mutation Status in BTK-Inhibitor Studies in WM


Study	Patient Population	Agent (s)	Time to Major Response (CXCR ^{Mut vs. WT})	Major Response Rate (CXCR ^{Mut vs. WT})	<u>></u> VGPR (CXCR ^{Mut vs. WT})	PFS (CXCR ^{Mut vs. WT})	
Pivotal	R/R	Ibrutinib	4.7 vs.1.8 mo.	68% vs. 97%	9% vs. 47%	38% vs. 70% (@ 60 mo.)	
	CXCR4 ^{Mut} vs CXCR4 ^{WT}						
	Median	Time to M	ajor Respo	onse: (4.2 v	/s. 1.9 mo.	s)	
		Median N	Лаjor RR: 🛛	71% vs. 87	%		
		Median	<u>></u> VGPR: 14	4% vs. 41%	6		
PFS: 59% vs. 75% @4 years							
ASPEN Cohort 1	IN, R/R	lbrutinib	6.6 vs. 2.8 mos.	65% vs. 82%	10% vs. 24%	49% vs. 75% (@ 42 mo.)	
	TN, R/R	Zanubrutinib	3.4 vs. 2.8 mos.	70% vs. 82%	18% vs. 34%	73% vs. 81% (@ 42 mo.)	

Phase 3 ASPEN Study Zanubrutinib vs. Ibrutinib in WM

NCT03053440

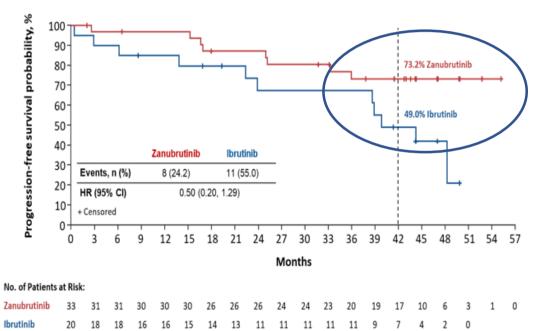
ASPEN: Best Overall Response and PFS by Investigator Assessment

 At 44.4 months event free rates for PFS were 78.3% and 69.7% for zanubrutinib and ibrutinib, respectively. For OS, 87.5% and 85.2%, respectively.

100 3.8 3.8 3.8 PD 90 19.2 15.4 15.4 SD 80 MR * ⁷⁰ PR VGPR CR 34.6 23.1 26.9 MRR 30 65% 20 26.9 30.8 26.9 10 0 -0 0 Zanubrutinib Zanubrutinib Zanubrutinib mFU 17.9 months 28.9 months 42.9 months

Responses Over Time Observed in *MYD88^{WT}*

 At 42.9 months event-free rates for PFS and OS were 53.8% and 83.9%, respectively.

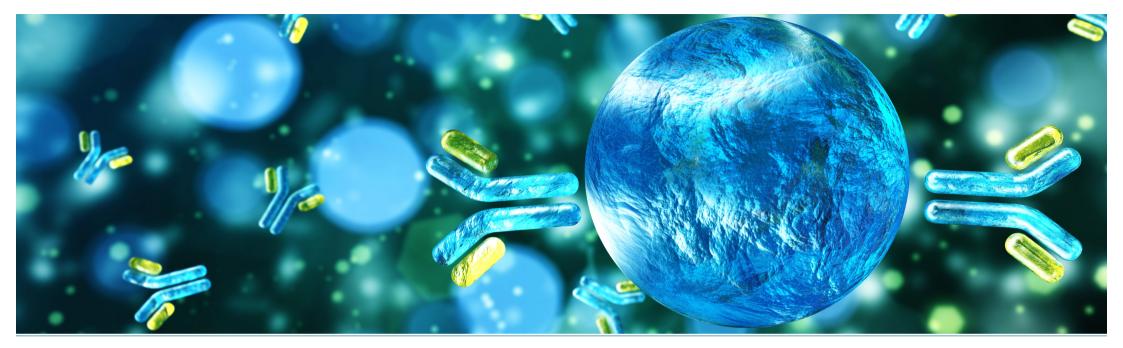

Dimopoulos MA et al, JCO 2023

Response and PFS in Patients With *MYD88^{MUT}* **by** *CXCR4^{MUT}* **Status**

Response Assessment by CXCR4 Status^a

	схо	R4 ^{MUT}	CX	CR4 ^{WT}
Response	lbrutinib Z	anubrutinil	b Ibrutinib 2	Zanubrutinib
	(n=20)	(n=33)	(n=72)	(n=65)
VGPR or better,	2	7	22	29
n (%)	(10.0)	(21.2)	(30.6)	(44.6)
Major response, n (%)	13	26	61	54
	(65.0)	(78.8)	(84.7)	(83.1)
Overall response,	19	<u>30</u>	68	63
n (%)	(95.0)	(90.9)	(94.4)	(96.9)
Time to MR, median (months)	6.6	3.4	2.8	2.8
Time to VGPR, median (months)	31.3	11.1	11.3	6.5

Bold blue text indicates >10% difference between arms.


PFS in Patients With MYD88^{MUT}CXCR4^{MUT}

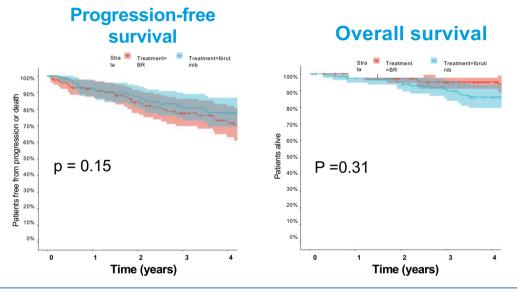
Tam et al, Blood Adv. 2024; Dimopoulos et al JCO 2023

ASPEN STUDY Adverse Events of Interest (Cohort 1)

	An	y grade	Gı	rade ≥3
AEs, ^a n (%)	lbrutinib (n=98)	Zanubrutinib (n=101)	lbrutinib (n=98)	Zanubrutinib (n=101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension*	25 (25.5)	15 (14.9)	20 (20.4)*	10 (9.9)
Atrial fibrillation/ flutter*	23 (23.5)*	8 (7.9)	8 (8.2)*	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia* ^b	20 (20.4)	35 (34.7)*	10 (10.2)	24 (23.8)*
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/ nonskin cancers	17 (17.3)/ 6 (6.1)	17 (16.8)/ 6 (5.9)	3 (3.1)/ 3 (3.1)	6 (5.9)/ 4 (4.0)

Dimopoulos et al, JCO 2023

Do we give BTK-inhibitors or chemoimmunotherapy to treatment-naïve patients?


MAYO CLINIC

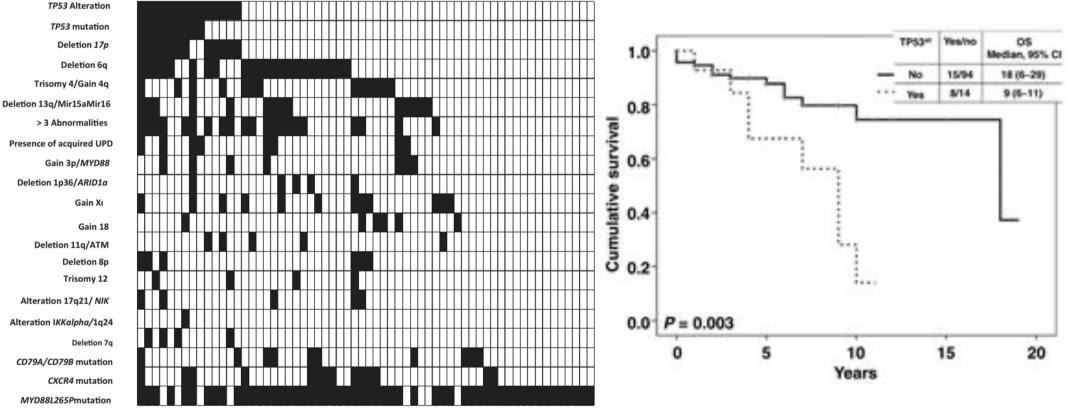
Bendamustine Rituximab versus Ibrutinib as Primary Therapy for Waldenström Macroglobulinemia: An International Collaborative Study

Jithma P. Abeykoon¹, Shaji Kumar¹, Jorge J. Castillo², Shirley D'sa³, Efstathios Kastritis⁴, Eric Durot⁵, Encarl Uppal³, Morel Pierre⁶, Jonas Paludo¹, Reema Tawfiq¹, Shayna R Sarosiek⁷, Olabisi Ogunbiyi⁸, Pascale Cornillet-Lefebvre⁹, Robert A. Kyle¹, Alain Delmer¹⁰, Morie A. Gertz¹, Meletios A Dimopoulos¹¹, Steven P. Treon², Stephen M. Ansell¹, and Prashant Kapoor¹

Variable	BR	Ibrutinib	p-value
Follow up, median, 95%Cl, y	4.5 (3.7-4.9)	4.5 (4-4.7)	0.7
Age, median, range, y	68 (40-86)	68 (39-86)	0.9
IPSS% Low Intermediate High	11 33 56	17 33 48	0.63
Cycles, median (range)	6 (1-6) >4 cycles, 77%	42 (0.3-98)	
Overall response rate, %	94	94	0.91
Major response rate, %	92	83	0.05
Complete response, %	20	2	<0.001
≥VGPR, %	50	33	0.009

- Bivariate analysis of age matched patients who received either Benda-R or Ibrutinib (N=246)
- 77% of Benda-R patients received 6 cycles
- MYD88 WT patients excluded
- Median Follow-Up: 4.2 years

Abeykoon et al, Updated IWWM-11, 2022.


© 2022 Mayo Foundation for Medical Education and Research

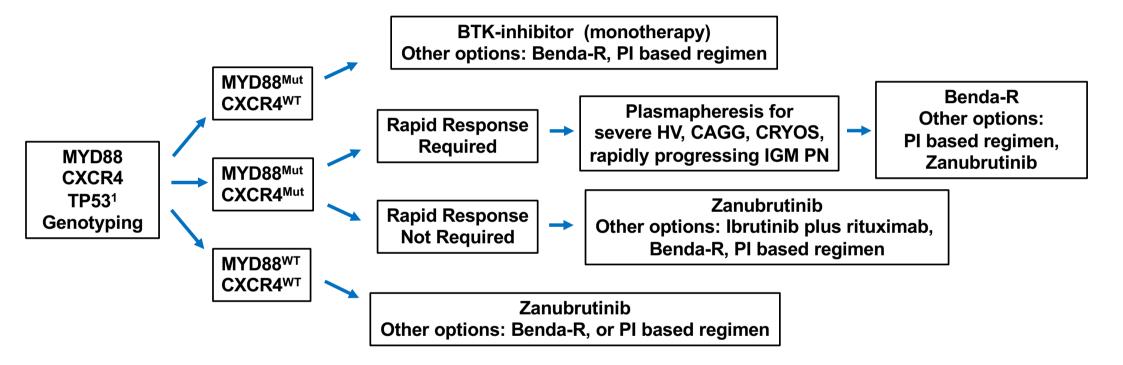
TP53 Alterations in Biomarker Analysis of ASPEN Study

	N=	Total TP53 ^{Mut}	Treatment Naïve TP53 ^{Mut}	Previously Treated TP53 ^{Mut}
All Patients	210	52/210 (24.8%)	7/41 (17.1%)	46/169 (27.2%)
MYD88 ^{Mut}	190	48/190 (25.2%)	6/36 (16.6%)	42/154 (27.3%)
MYD88 ^{WT}	20	5/20 (25%)	1/5 (20%)	4/15 (26.7%)

Tam et al, Blood Adv. 2024

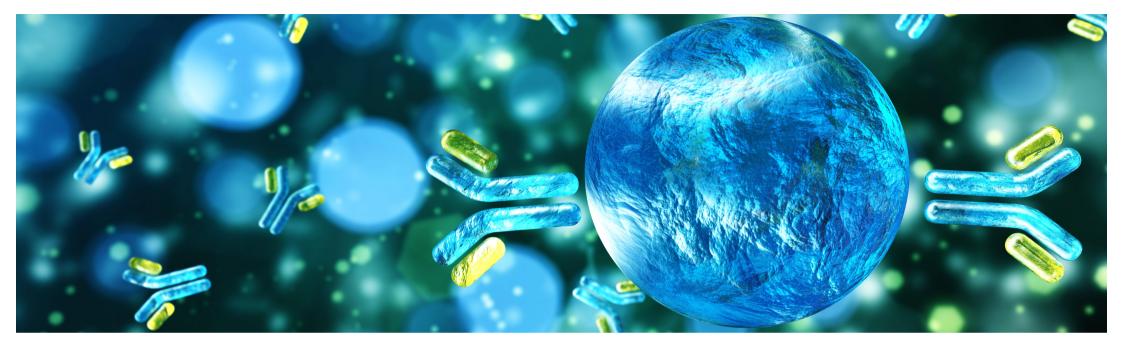
Impact of TP53 Alterations on Survival in Waldenstrom's Macroglobulinemia

Poulain et al, CCR 2017


Outcomes in ASPEN Study for TP53 Wild-Type vs. TP53 Mutated Patients

		th <i>MYD88</i> ^{м∪⊤} th ibrutinib	Patients with <i>MYD88</i> ^{MUT} treated with zanubrutinib		
Response	<i>TP53^{₩T}</i> (n=70)	<i>TP53</i> ^{MUT} (n=22)	<i>ТР53^{WT}</i> (n=72)	<i>ТР53^{МUT}</i> (n=26)	
VGPR or better, n (%)	21 (30.0)	3 (13.6) [†]	27 (37.5)	9 (34.6) [†]	
Major Response, n (%)	60 (85.7)*	14 (63.6)*	59 (81.9)	21 (80.8)	
Median time to VGPR or better	11.4	24.9	6.5	11.1	
(min, max), months	(2.0, 49.9)	(5.6, 46.9)	(1.9, 42.0)	(3.0, 26.0)	
Median time to Major Response (min, max), months	2.9 (0.9, 49.8)	3.0 (1.0, 13.8)	2.8 (0.9, 49.8)	2.8 (1.0, 5.6)	
PFS Event-free rate at 42 months, % <i>P</i> value ^b	72.1	57.9 0.027	84.6	62.0 0.120	

Compared to ibrutinib, zanubrutinib demonstrated a more favorable VGPR+CR rate (*P* value^c < 0.05) and trend for major response rate (*P* value^c = 0.11) in *TP53*^{MUT}


Tam et al, Blood Adv. 2024

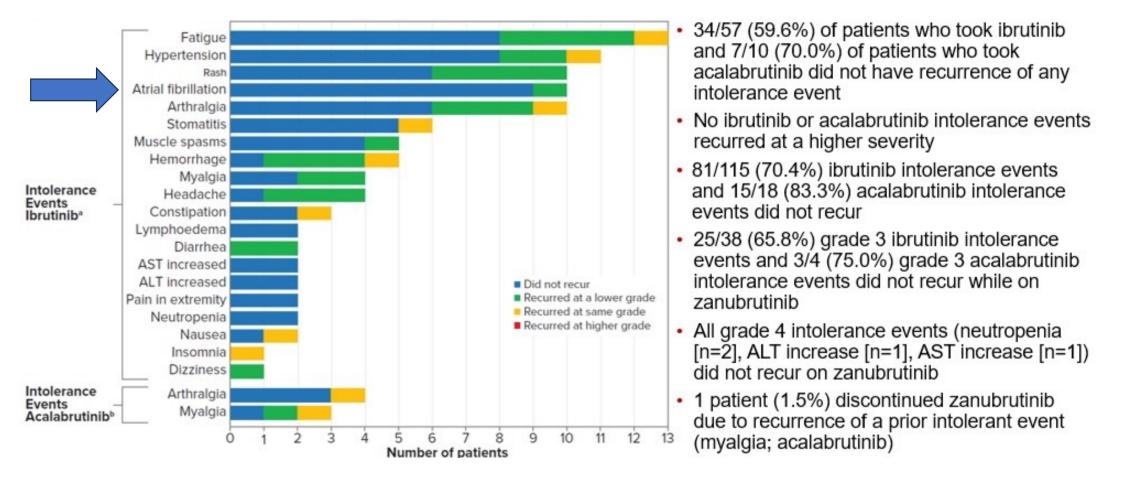
Treatment Algorithm for Symptomatic Treatment-Naïve Waldenstrom Macroglobulinemia

1. Zanubrutinib is recommended for TP53 Alt WM Patients

Treon et al, How I Treat WM, Blood 2024

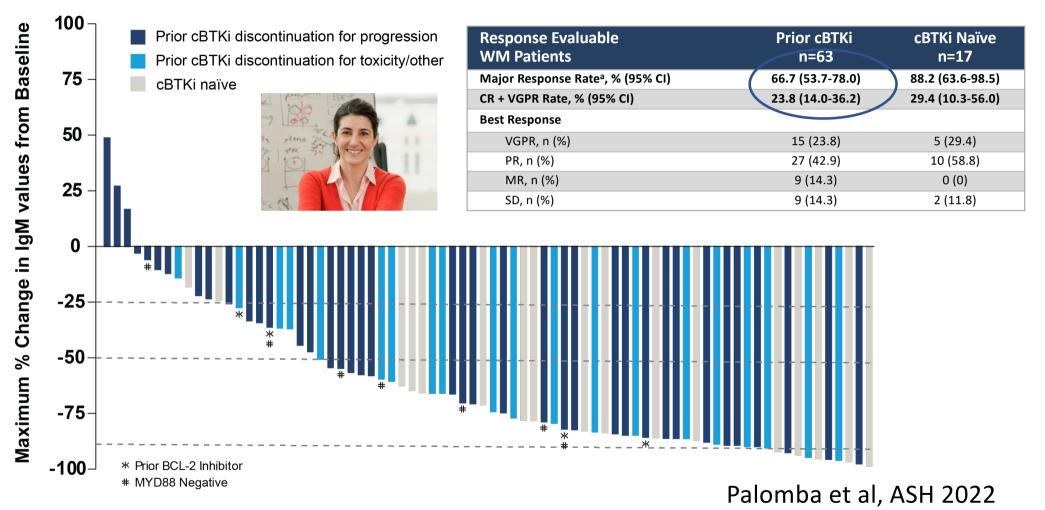
How do we manage BTK-inhibitor intolerant or resistant disease?

Dose **Reductions** Related to Adverse **Effects** in Ibrutinib **Treated WM Patients**

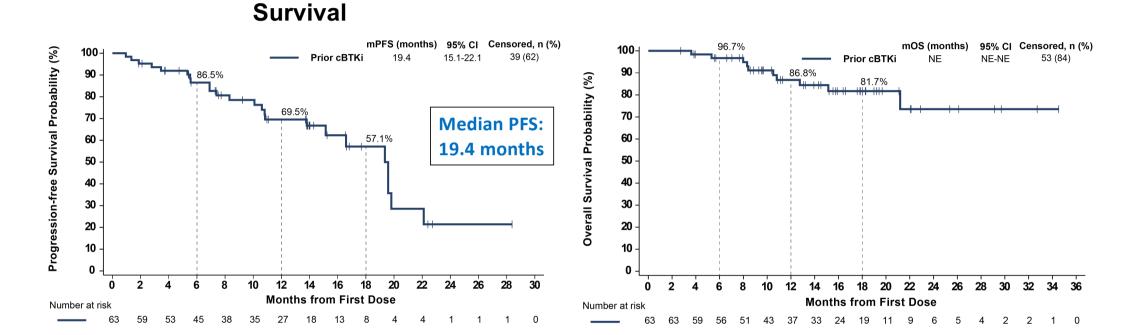

- 95/358 (25%) required at least 1 dose reduction for intolerance
 - -Median time to 1st dose reduction 7.3 (0.5-75 months)
 - -26/95 (27%) continued to be symptomatic after dose-reduction
 - -10/26 of dose-reduced patients required second dose-reduction at a median of 23 (3-75 months)
 - -Median age 71 vs 66 years for dose reduced patients
- Hematological responses were maintained or improved in 73% and 21% of dose reduced patients within 1 year of follow-up.

Zanubrutinib in Previously Treated B-Cell Malignancies Intolerant to Ibrutinib/Acalabrutinib

Shadman et al, Lacet Haematol. 2023


Characteristics	Cohort 1 (prior ibrutinib) (n=57)	Cohort 2 (prior acalabrutinib +/- ibrutinib) (n=10)	Total (N=67)
Indication, n (%)			
CLL	38 (66.7)	5 (50.0)	43 (64.2)
WM	9 (15.8)	2 (20.0)	11 (16.4)
SLL	6 (10.5)	1 (10.0	7 (10.4)
MCL	2 (3.5)	1 (10.0)	3 (4.5)
MZL	2 (3.5)	1 (10.0)	3 (4.5)
Age, median (range), year	71.0 (49-91)	73.5 (65-83)	71.0 (49- 91)
Male, n (%)	30 (52.6)	6 (60.0)	36 (53.7)
ECOG PS 0, n (%)	33 (57.9)	4 (40.0)	37 (55.2)
No. of prior therapy regimens, median (range)	1.0 (1-12)	2.5 (1-5)	1.0 (1-12)
Prior BTKi, n (%)	57 (100)	10 (100)	67 (100)
Ibrutinib monotherapy	49 (86.0)	6 (60.0)ª	55 (82.1)
Ibrutinib combination therapy	9 (15.8) ^b	0	9 (13.4)
Acalabrutinib monotherapy	0	10 (100)	10 (14.9)
Time on prior BTKi, ^c median (range), months	10.61 (1.1-73.7)	3.33 (0.5-26.9)	_
On-study zanubrutinib dosing regin	nen		\frown
160 mg bid	35 (61.4)	7 (70.0)	42 (62.7)
320 mg qd	22 (38.6)	3 (30.0)	25 (37.3)
Data Cutoff: 8 September 2021 a. Six patients had both prior ibrutinib and acalabrutinib ibrutinib exposure for cohort 1 and acalabrutinib for coh		rutinib combination therapy followed by ibrutinib monothera	py. c. Cumulative

Recurrence of Adverse Events following Switchover to Zanubrutinib


Shadman et al, Lancet Haematol 2023

Non-covalent BTK-I Pirtobrutinib Efficacy in WM Patients

Data cutoff date of 29 July 2022. Data for 4 patients are not shown in the waterfall plot due to missing IgM values at baseline or response assessment. Response as assessed by investigator based on Modified IWWM6 (Owen's) criteria. Under modified IWWM6 criteria, a PR is upgraded to VGPR if corresponding IgM is in normal range or has at least 90% reduction from baseline. ^aMajor response includes subjects with a best response of CR, VGPR, or PR. Total % may be different than the sum of the individual components due to rounding.

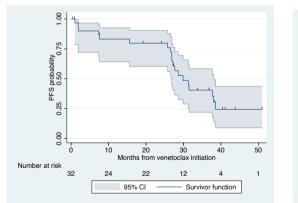
Pirtobrutinib in WM: PFS and Overall Survival in Prior cBTKi Patients

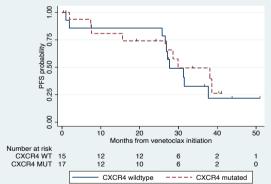
- Median follow-up for PFS and OS in patients receiving prior cBTKi was 14 and 16 mos, respectively.
- 55.6% (35/63) of patients who received prior cBTKi remain on pirtobrutinib.

Palomba et al, ASH 2022

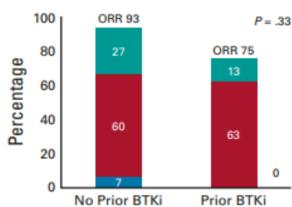
Overall Survival

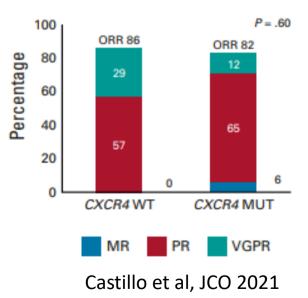
Data cutoff date of 29 July 2022. Response as assessed by investigator based on modified IWWM6 criteria.


Progression-Free

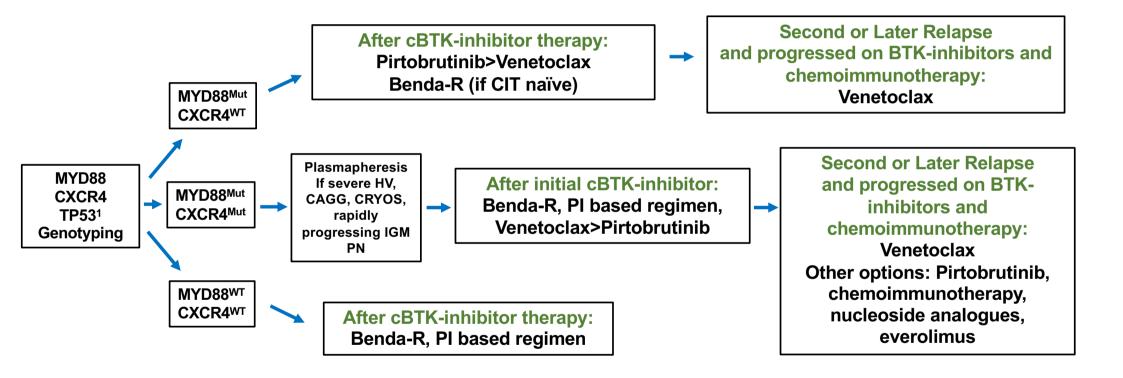

Venetoclax for Previously Treated WM

Dose escalation to 800 mg/day, 2 years treatment

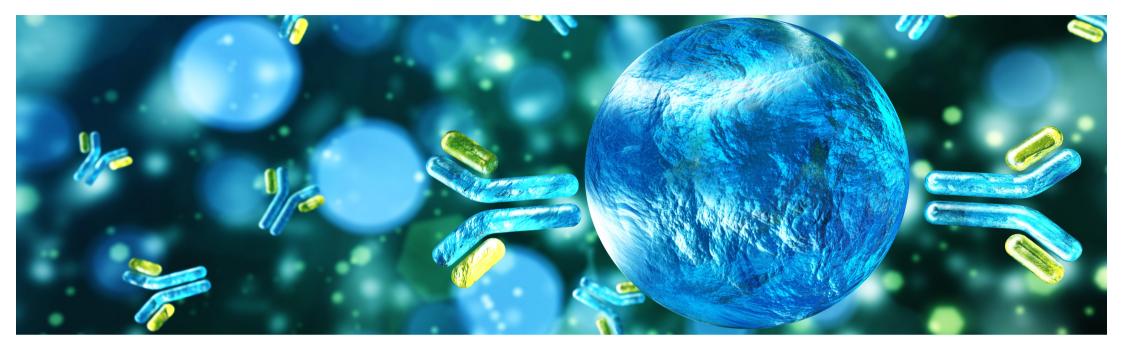

ORR 84%; Major RR 81% Median PFS: 30 mos. Not impacted by CXCR4 mutation status. Grade ≥3 neutropenia: 45%



PFS for All Pts



PFS by CXCR4 Mut Status



Treatment Algorithm for Symptomatic Previously Treated Waldenstrom Macroglobulinemia

1. Zanubrutinib is recommended for TP53 Alt WM Patients

Adapted from Treon et al, Blood 2024

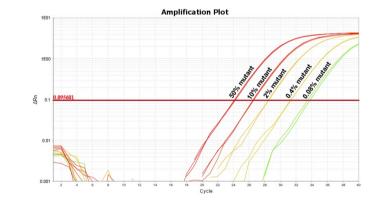
What does the future hold for WM therapy?

A Multi-Center, Open-Label, Single-Arm Phase II Trial of Bendamustine, Rituximab and Acalabrutinib in Treatment Naïve WM - BRAWM

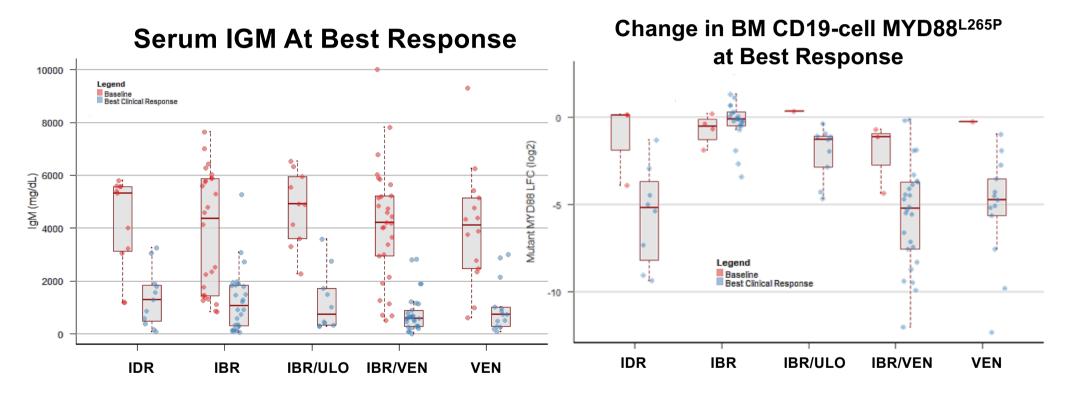
	Screening	Cycle 1-6	Month 7	Month 12	Month 18	Follow-
Treatment						
Bendamustine		<u>A</u>				
Rituximab				<u> </u>		
Acalabrutinib				r		
Analysis	^		^	^	^	X
MRD	~		2	~	×	
CT Scan*	\$		~	~	×	
Bone Marrow	\diamond		\diamond	\diamond	\checkmark	

- N=38 (May 2023).
- Major Response Rate 100%; VGPR 67% for 24 pts who reached cycle 7.
- 14/38 patients (37%) experienced grade 3/4 toxicities during combination treatment, 3 febrile neutropenias; 9 non-febrile neutropenias.

Berinstein et al, ICML 2023



CLINICAL TRIALS FOR QUANTITATIVE MYD88^{L265P} RESPONSE ASSESSMENT


Trial	Therapy	Mechanism	Cohort	N=
NCT02300437	Ixazomib, Dex, Rituximab (IDR)	Proteasome Inhibitor and CD20 MoAb	Untreated	15
NCT02604511	Ibrutinib (IBR)	BTK Inhibitor	Untreated	26
NCT02677324	Venetoclax (VEN)	BCL2 Inhibitor	Previously Treated	14
NCT03225716	Ibrutinib, Ulocuplumab	BTK Inhibitor and CXCR4 MoAb	Untreated	10
NCT04273139	Ibrutinib, Venetoclax	BTK Inhibitor and BCL2 Inhibitor	Untreated	31

- Available bone marrow and matched peripheral blood DNA from CD19selected cells from 96 WM patients who participated in 5 clinical trials.
- Samples were taken at baseline, 6 and 12 months, and best response.
- A standard curve was made by serially diluting DNA from heterozygous MYD88 L265P mutated BCWM.1 WM cells with DNA from MYD88 wild-type OCI-Ly19 cells.
- Standard curve was used to convert dCT values to percentage of MYD88 L265P for each sample. Assay sensitivity was 0.08%

Tsakmaklis et al, ASH 2023

RESPONSE BY SERIAL SERUM IGM and qMYD88 ASSESSMENTS AT BEST RESPONSE

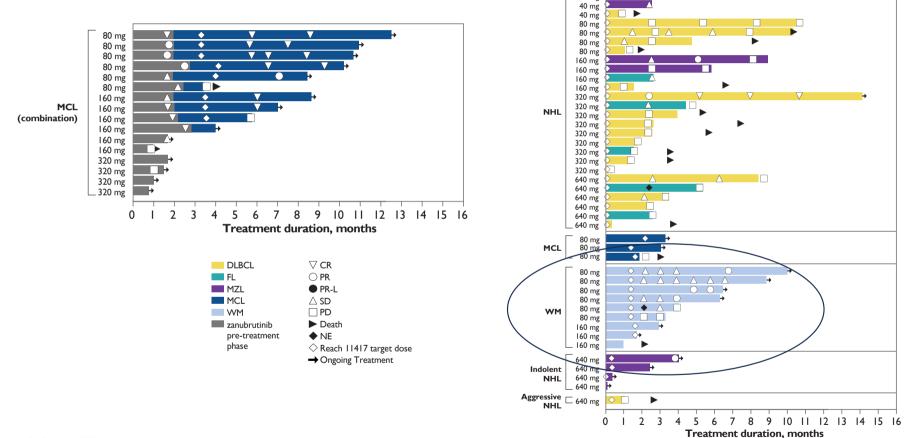
IDR, Ixazomib, Dex, Rit; IBR, Ibrutinib; ULO, Ulocuplumab; VEN, Venetoclax

Castillo et al, Blood Adv 2020; Treon et al, Blood 2021; Castillo et al, Leukemia 2022; Castillo et al, JCO 2022; Castillo et al, Blood 2023.

Efficacy of Sonrotoclax as Monotherapy and Zanubrutinib BGB-11417-101 – NHL or WM

	BGB-11417 moi (N=43	BGB-11417 + zanubrutinib combination (N=16)	
Response, n (%)	R/R NHL, DLBCL, MZL, FL, tFL, MCL (N=34) ^a	R/R WM (N=9) ^b	R/R MCL (N=16)℃
Treated with BGB-11417	34	9	10
Efficacy evaluable	29 ^d	7	9
Best overall response ^e	3 (10)	3 (43)	7 (78)
CR	1 (3)	0	Major RR 6 (67)
PR	2 (7)	3 (43)	86% 1 (14)
SD	7 (24)	2 (29)	0
PD	18 (62)	1 (14)	2 (22)
Discontinued before assessment	1 (3)	1 (14)	0
Follow-up, months (range)	7 (0.1-29)	6 (2-10)	5 (1-13)

Data cutoff: 1 September 2022.


aAt 40 mg: n=3; 80 mg: n=7; 160 mg: n=4; 320 mg: n=9; 640 mg: n=11. bAt 80 mg: n=6; 160 mg: n=3. cAt 80 mg: n=12; 160 mg: n=4. dOne patient with MCL on monotherapy MCL was efficacy evaluable. ePR or better.

CR=complete response, DLBCL=diffuse large B-cell lymphoma, FL=follicular lymphoma, MCL=mantle cell lymphoma, NHL=non-Hodgkin's lymphoma, PD=progressive disease, PR=partial response, R/R=relapsed/refractory, SD=stable disease, tFL=transformed follicular lymphoma, Soumerai J et al. Poster presented at ASH 2022 Abstract 4201

Sonrotoclax: Duration of Treatment and Best Response^a

40 mg

BGB-11417-101 – NHL or WM

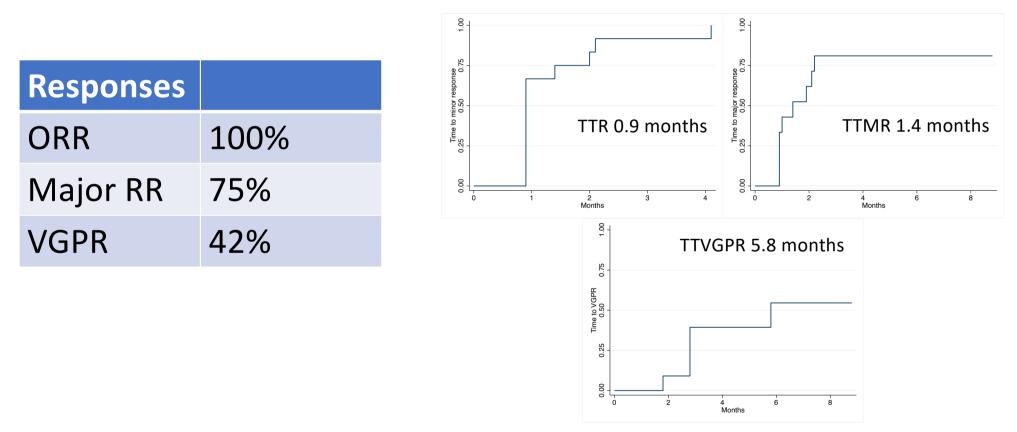
Data cutoff: I September 2022.

aSafety analysis set.

All received treatments were monotherapy except patients in part 3B, which were combo MCL

CR=complete response, DLBCL=diffuse large B-cell lymphoma, FL=follicular lymphoma, MCL=mantle cell lymphoma, MZL=marginal zone lymphoma, NHL=non-Hodgkin's lymphoma, PD=progressive disease, PR=partial response, PR-L=partial response with lymphocytosis, SD=stable disease, WM=Waldenström's macroglobulinemia,

Soumerai J et al. Poster presented at ASH 2022 Abstract 4201



Pirtobrutinib and Venetoclax Study in Relapsed/Refractory WM

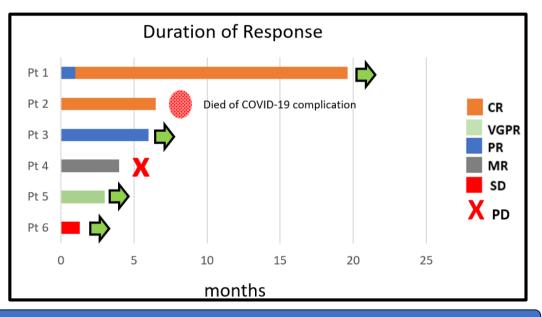
Characteristic	Number/Median	Percentage/Range
Median age	66	57-75
Female sex	7	50%
N previous lines	2	1-3
Previous R-regimens	11	79%
Previous BTKi	7	50%
Previous R-reg + BTKi	4	29%
Median IgM	2234	551-7249
Median hemoglobin	9	6.6-11.5
Median platelet count	187	60-279
MYD88 L265P	12	86%
CXCR4 MUT	5	36%
TP53 MUT	1	7%
Median BM involvement	80%	20-90%

NCT05734495

Pirtobrutinib and Venetoclax Study in Relapsed/Refractory WM

Data for 12 Evaluable Patients; Median follow-up 8.4 months

CD20 CAR-T Cell Therapy

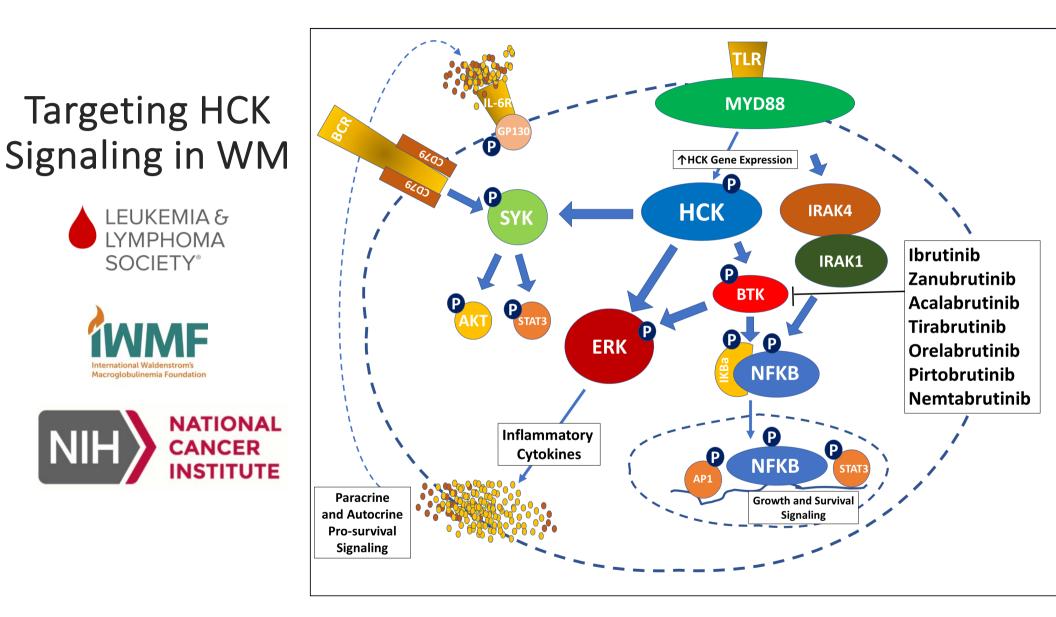

Patient characteristics (N=6)	
Age, median (range)	69 (51-79)
Female, n (%)	2 (33%)
Prior lines of therapy, median (range)	7.5 (2-12)
Prior Bruton tyrosine kinase inhibitor	6 (100%)

Best response by IWWM-7 ⁺ (N=6)		
CR	2 (33%)	Major
VGPR	1 (16.7%)	- response
PR	1 (16.7%)	rate: 67%
MR	1 (16.7%)	
SD	1 (16.7%)	

Safety (N=6)				
	G1	G2	G3	G4
CRS	2 (33%)	3 (50%)	0	0
ICANS	1 (16%)	0	0	0

D5 396

Mazyar Shadman


No patient has started new anti-WM treatment after MB-106

Fred Hutch

†Dimopoulos MA, et al. Blood. 2014;124(9):1404-1411. VGPR = Very good partial response, MR = Minor response; Updated at EHA June 9, 2023, Presented by Mazyar Shadman, MD (FHCC),

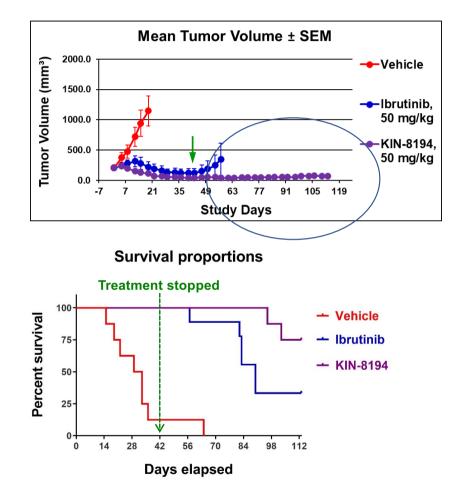
32 at the EHA2023 Congress. BD

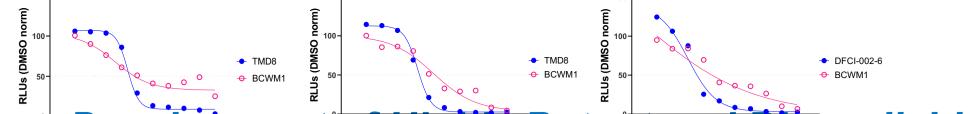
KIN-8194 is a highly potent HCK/BTK Kinase Inhibitor

EXAMPHOID NEOPLASIA The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTK^{Cys481} ibrutinib resistance

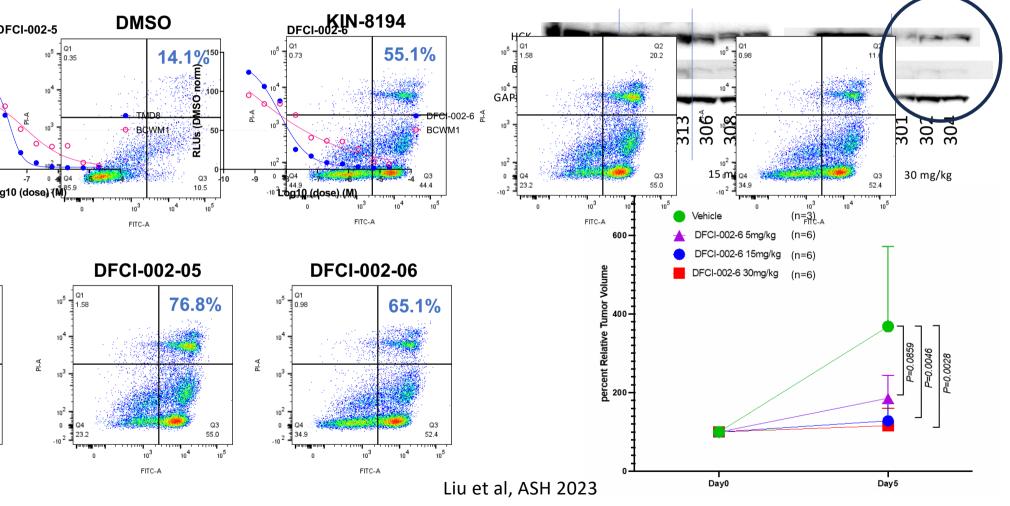
Guang Yang,^{1,2} Jinhua Wang,³ Li Tan,³ Manit Munshi,¹ Xia Liu,¹ Amanda Kofides,¹ Jiaji G. Chen,¹ Nicholas Tsakmaklis,¹ Maria G. Demos,¹ Maria Luisa Guerrera,¹ Lian Xu,¹ Zachary R. Hunter,^{1,2} Jinwei Che,³ Christopher J. Patterson,¹ Kirsten Meid,¹ Jorge J. Castillo,^{1,2} Nikhil C. Munshi,^{2,4} Kenneth C. Anderson,^{2,4} Michael Cameron,⁵ Sara J. Buhrlage,³ Nathanael S. Gray,³ and Steven P. Treon^{1,2}

¹Bing Center for Waldenstrom's Macroglobulinemia; ²Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA; ³Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA; ⁴Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA; and ⁹Department of Molecular Medical School, Scripps Research, La Jolla, CA


٠	KIN-8194 is a highly
	potent dual HCK and
	BTK inhibitor with
	superior antitumor
	activity over ibrutinib in
	MYD88-mutated B-cell
	lymphomas.


KEY POIN

 KIN-8194 overcomes ibrutinib resistance with a survival benefit in TMD-8 ABC DLBCL xenografted mice and synergizes with venetodax. Activating mutations in MYD88 promote malignant cell growth and survival through hematopoietic cell kinase (HCK)-mediated activation of Bruton tyrosine kinase (BTK). Ibrutinib binds to BTK^{Cys481} and is active in B-cell malignancies driven by mutated MYD88. Mutations in BTK^{Cys481}, particularly BTK^{Cys4815er}, are common in patients with acquired ibrutinib resistance. We therefore performed an extensive medicinal chemistry campaign and identified KIN-8194 as a novel dual inhibitor of HCK and BTK. KIN-8194 showed potent and selective in vitro killing of MYD88-mutated lymphoma cells, including ibrutinib-resistant BTK^{Cys4815er}. expressing cells. KIN-8194 demonstrated excellent bioavailability and pharmacokinetic parameters, with good tolerance in rodent models at pharmacologically achievable and active doses. Pharmacodynamic studies showed sustained inhibition of HCK and BTK for 24 hours after single oral administration of KIN-8194 in an MYD88-mutated TMD-8 activated B-cell diffuse large B-cell lymphoma (ABC DLBCL) and BCWM.1 Waldenström macroglobuli


nemia (WM) xenografted mice with wild-type BTK (BTKWT)- or BTKCys4815er-expressing

tumors. KIN-8194 showed superior survival benefit over ibrutinib in both BTK^{WT} and BTK^{Cys4815er}-expressing TMD-8 DLBCL xenografted mice, including sustained complete responses of >12 weeks off treatment in mice with BTK^{WT}-expressing TMD-8 tumors. The BCL_2 inhibitor venetodax enhanced the antitumor activity of KIN-8194 in BTK^{WT}- and BTK^{Cys4815er}-expressing MYD88-mutated lymphoma cells and markedly reduced tumor growth and prolonged survival in mice with BTK^{Cys4815er}-expressing TMD-8 tumors treated with both drugs. The findings highlight the feasibility of targeting HCK, a key driver of mutated MYD88 pro-survival signaling, and provide a framework for the advancement of KIN-8194 for human studies in B-cell malignancies driven by HCK and BTK.

Development of Highly Potent and Bioavailable dual Bifunctional BTK/HCK PROTACS

12th International Workshop on Waldenstrom's Macroglobulinemia Prague, Czech Republic - October 17-19, 2024 www.waldenstromsworkshop.org

Thank you, Dr. Bruce Cheson for organizing IWWM-1 that fostered a growing global community devoted to finding a cure for WM!

Closing Ceremonies of the 11th International Workshop on Waldenstrom's Macroglobulinemia Madrid, Spain 2022